
Russell Doty

Red Hat

disclaimer
 This presentation does not constitute advice or legal

advice.

 It represents my personal observations and insights.

 I’m not speaking for Red Hat.

 If you have questions, seek legal advice.

 If you are tempted to follow my suggestions blindly,
seek professional help!

 The goal is to help you get started in your own
personal journey with Open Source software.

What’s in it for me? - Fun
 Work on something interesting

 Do the parts you want to do

 Access to the entire project

 Learn! Tools, technologies, disciplines,
skills

 Control your own destiny

 Contribute to something bigger than you

 Make a difference

 Associate with some of the brightest people on the
planet

What’s in it for me? - Profit
 “My resume is on Google”

 This is the code I’ve written

 These are the things I’ve designed

 These are the problems I’ve solved

 These are the people I’ve helped

 These are the complex systems I’ve
contributed to

 This is where I’ve done the entire
software lifecycle

 This is how I interact with people

 It’s public. It’s good. It’s me.

What is Open Source?
Open Source Proprietary

 Source code available

 Can be used for any purpose

 Can be modified

 Can be freely redistributed

 Under an Open Source
license

 Not public domain

 Generally binary only

 Source code restricted

 Controlled by owner

 Only owner can make
changes

 Owner can set terms of use

 Generally can’t be
redistributed

 Generally can’t be modified

Richard Stallman: Four Freedoms
for Free Software
 Freedom to run the program

for any purpose

 Freedom to study how the program
works and adapt it to your needs

 Freedom to redistribute copies so
you can help your neighbor

 Freedom to improve the program and release your
modifications to the public

Open Source License Differences
Changes Returned No Changes Returned

 All changes must be returned
to the community as a pre-
requisite for redistribution

 Example: GPL

 Changes do not have to be
returned to the community as
a pre-requisite for
redistribution

 Example: BSD

Note: seek legal advice if you have
any questions on licensing

Changing/Improving Software
Proprietary Open Source

 The owner can change it

 Only the owner

 Can change it in any way at
any time

 Can refuse to change it!

 Can discontinue it

 No recourse

 The upstream maintainer can
change it

 Distributions can change it

 You can change it

 You can hire or convince
someone to change it

 Anyone can change it!

 AND

 No one is forced to accept
changes

Rule #1 for Open Source:
No one has to accept your changes
 You have the right to make changes

 You have the obligation to make the changes available
under certain conditions

 You do not have the power to make anyone accept
your changes

 No matter how important it is to you

 You have to persuade people to accept your changes

 This acceptance based on influence and participation,
not command and control

How does Open Source work?
 Projects

 Communities

 Maintainers, Contributors, and Participants

 Upstream/Downstream/Users

Open Source Projects
 Projects are the building blocks of Open Source

 A unit of software that can be installed to perform a task
or function

 Examples: Evolution, The GIMP, Libre Office, Linux
kernel

 Three Legs of an Open Source Project

 Source Code Control repository

 Web Site

 Mailing List & irc channel

Open Source Community
 Community – the group of people supporting a project

 Maintainers

 Contributors
 Code

 Test Cases

 Documentation

 Packaging

 Testing

 Community Work (web site, community voice, etc.)

 Users
 Provide use support, bug reports,

Community
Participation is

Voluntary

Streams
 Upstream

 The person, organization, or group which maintains &
enhances a project. Final say on what is included in the
official project.

 Downstream

 An organization or mechanism for integrating and
delivering applications and modules

 Debian, Red Hat, SuSE, Canonical, etc.

 Users

 People or organizations consuming software

Roles
 Maintainer or Upstream Maintainer

 Commit access to repository

 Final say about what goes into the official project

 Committer
 Commit access to repository

 Contributor
 Contributes – code, documentation, testing, support, etc.

 Supporter
 Engaged but doesn’t directly contribute

 Consumer or User
 Uses the software without contributing

“Push it Upstream”
 The process of getting changes accepted into a

project

 Push it Upstream is not:

 Slap an open source license on
some code

 Throw it up on SourceForge

 Demand that a project accept it

We will tell you how to get changes accepted after covering how to make them

Mechanics of Open Source
Components Process

 Web sites

 Source Code Repositories

 Mailing Lists

 Patch Submission

 Project Specific Procedures &
Processes

 Find out how the Project
works

 Develop Code

 Release under proper license

 Push the code upstream

 Maintain the code

Web Sites
Core of Project

 Overview

 Features

 Download

 Documentation

 Plans/Schedule

 Bug Reporting

Source Code Repositories
Git, SVN, CVS, etc.

 Source Code

 History of Changes

 Versions

 Configuration

 Checkin/Checkout

 Branching

 Merging

 Access Control

You need to learn to use the source code control system

Mailing Lists
Primary Vehicle for Work Using the Mail List

 Questions

 Discussions

 Proposed Changes

 Feedback

 Patches

 ACK/NAK

 Archives

 Flame wars…

 Join the project mail list

 Search the Archives

 Follow the project mail list

 Learn protocol, conventions
& personalities of the list

 Contribute to the list

 Ask questions on the list

 Review patches

 Submit patches

Project Processes & Guidelines
 Learn how this project works

 Project Web site is a great place to start

 Differs from project to project

 Follow the process

 Even if you don’t like it

 Let’s look at LibreOffice as an example:

Developing Code
 Not going to say much – you should know what you are

doing here

 Follow the guidelines of the project
 Language

 Formatting (white space & tabs matter)

 Conventions, variable naming, etc.

 Test cases

 Testing

 Base on latest upstream version

 Release early / Release often!

Packaging Code
 Diffs

 Small, self contained

 Reviewer should understand in 5-10 minutes

 Bi-sectable

 Applies cleanly

 Include Explanation

 In-line in email (not attached)

 Goal is to obtain review and feedback

 Make it easy for reviewer – or they will move on!

Gaining Upstream Acceptance
 Submit patchsets on mailing list

 Follow up quickly on questions and feedback

 Make suggested changes
 Unless compelling reason not to

 Need to get ACKs
 And no NAKs

 Stay positive and proactive

 Remember: you have to justify acceptance –
upstream doesn’t have to justify rejection

 Play by the rules or be ignored

Gaining Upstream Acceptance

Remember: you have to justify
acceptance – upstream doesn’t
have to justify rejection

Notes on Feedback
 There is a stereotype that Open Source is a bunch of

Alpha Geeks with Asperger’s Syndrome and no social
skills
 There is a kernel of truth to this…

 Consider:
 Debate is good – for learning and making progress

 Directness or Bluntness is considered a virtue

 Many maintainers are pressed for time

 Maintainers reluctant to invest time in people unless
they believe there will be benefit and return

 Reputation and Influence are earned

More on Feedback
 Don’t take it personally

 Feedback is against your code – not against you

 You get feedback because someone cared enough to
spend the time; listen to what they have to say

 Much of the debate is valuable and you learn a lot

 However:
 There are jerks out there

 If a project is dominated by jerks, find another project
 Life is too short to waste dealing with jerks

 Don’t be too sensitive / Don’t put up with too much crap

Feedback…
NAK

Code poorly structured. Needs indenting and white
space. Variable names not meaningful. Fails at 2pi; needs
input validation. Needs better and more robust error
handling.

Consider using Heimdall-Riemann for better
performance.

Feedback 2
Who do you think you are, wasting our time with this
drivel. This code is such crap you must be a total moron.
Get off our mailing list loser and climb back under that
rock in your mother’s basement.

Feedback 3
ACK.

Committed to repository, commit as34gcd878ddlefy.

Please register yourself in the maintainers file.

Finding a Project/Community
 What are you interested in?

 What projects are in this area?

 How active is the project?

 Who are the key players?

 What is the interaction style?

 What is the general feel of the project?

 Is it something you think you can contribute to?

 Note: expertise is something you build, not something
you have to start with.

Joining a Project/Community
 Read the Web site/follow the mail list & irc

 Check out the code and get familiar with it

 Look for starter tasks:

 Bug triage

 Simple bug fixes

 Code cleanup/refactoring

 Documentation

 Test cases

 Review patches on the mailing list

How to Succeed/How to Fail
Succeed Fail

 Join the community &
Contribute

 Offer changes of value

 Package Patches for Review

 Respond to Feedback

 Make suggested changes

 Work with the community

 RTFM

 Listen!

 Doesn’t match project

 Patch Bombs

 Code doesn’t build

 Code doesn’t work

 Don’t listen to reviewers

 Approach community with an
attitude

 Demand your changes be
accepted

Your Code is Accepted! Now What?
 Celebrate!

 Let the world know

 Look for feedback from people using it
 Praise – bask in it!

 Bugs – fix ‘em

 Valid RFEs – consider them

 Whining – ignore

 Maintain
 You brought it into the world; your responsibility

 Enhance! What are you going to do next?

Go Forth and Benefit!
 Are you having fun?

 Yes – keep going!

 No – re-evaluate

 Build your reputation

 Build your online presence

 Look for more opportunities to participate
 Gatherings, hackathons, meetups

 Mercenary? Look for ways to monetize

 Mentor

 Be ready for incoming opportunities

